retical value $M_{0}=219$. The values $M_{t, \text { obs }}$ and $M_{t, \text { calc }}$ can then be compared, which was done with our new data. The conclusion of Mackay, that there should exist 41 more space groups than have actually been observed, could be confirmed to a certain extent, because the number of space groups without realization decreased from 41 to 22 , as mentioned above.

We thank Dr A.L. Mackay (Birkbeck College, London) for having sent us his manuscript before publication and the Schweizerischen Nationalfonds (Project no. 1872/3362) for financial support.

References

Donnay, J. D. H., Donnay, G., Cox, E. G., Kennard, O. \& King, M. V. (1963). Crystal Data, Determinative Tables. 2nd ed. A.C.A. Monograph No. 5.
Donnay, J. D. H. \& Nowacki, W. (1954). Crystal Data, Classification of Substances by Space Groups and their Identification from Cell Dimensions. Geol. Soc. America, Mem. 60.
Mackay, A.L. (1967). Acta Cryst. 22, 329.
Niggli, P. (1926). Z. Kristallogr. 64, 357.
Nowacki, W. (1951). Helv. Chim. Acta, 34, 1957.

Acta Cryst. (1967). 22, 940

Rare earth-germanium and -silicon compounds at 5:4 and 5:3 compositions. By Gordon S.Smith, A.G.Tharp* and Quintin Johnson, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 22 December 1966)

Abstract

Thirteen new rare earth germanides and eleven new rare earth silicides of 5:4 stoichiometry have been prepared. Lattice constants and structure-types have been determined, principally by single-crystal techniques. For the $\mathrm{R}_{5} \mathrm{Ge}_{4}$ compounds, all of the lanthanide elements studied show the orthorhombic $5: 4$ phase previously found for $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$. (Rare earth metals not studied were Pm , Eu and Yb ; in addition to these, Ho and Tm were not studied in the $\mathrm{R}_{5} \mathrm{Si}_{4}$ series.) The situation for the analogous silicon compounds is more complex. $\mathrm{Tb}_{5} \mathrm{Si}_{4}, \mathrm{Dy}_{5} \mathrm{Si}_{4}, \mathrm{Er}_{5} \mathrm{Si}_{4}$ and $\mathrm{Y}_{5} \mathrm{Si}_{4}$ crystallize with the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$-type structure; Sm and Gd probably do also, although no single crystals were obtained from these two preparations. $\mathrm{La}_{5} \mathrm{Si}_{4}, \mathrm{Ce}_{5} \mathrm{Si}_{4}, \mathrm{Pr}_{5} \mathrm{Si}_{4}$ and $\mathrm{Nd}_{5} \mathrm{Si}_{4}$ form tetragonal crystals, possibly of the $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ type, whereas $\mathrm{Lu}_{5} \mathrm{Si}_{4}$ exhibits a monoclinic distortion of the orthorhombic phase. $\mathrm{Ce}_{5} \mathrm{Si}_{3}$ and $\mathrm{Pr}_{5} \mathrm{Si}_{3}$ were found to form tetragonal crystals of the $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ structure type. Powder-pattern data in the literature for $\mathrm{La}_{5} \mathrm{Si}_{3}$ could also be indexed on the basis of this structure type.

The recent characterization (Smith, Johnson \& Tharp, 1967) of an orthorhombic phase in the samarium-germanium system as $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ has led to the present investigation of other rare earth-germanium and -silicon systems for the occurrence of this new structure type.

Rare earth-silicon compounds at the neighboring composition, $\mathrm{R}_{5} \mathrm{Si}_{3}$, were shown by Gladyshevskii \& Kripyakevich (1964) to be of the $D 8_{8} \mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure type for $\mathrm{R}=\mathrm{Gd}$ through Lu. A subsequent investigation (Gladyshevskii, Dvorina, Kulikova \& Verkhoglyadova, 1965) of the $\mathrm{La}-\mathrm{Si}$ system indicated the formation of $\mathrm{La}_{5} \mathrm{Si}_{3}$, but its structure type was not specified. The present study shows $\mathrm{Ce}_{5} \mathrm{Si}_{3}$ and $\mathrm{Pr}_{5} \mathrm{Si}_{3}$ to have a structure of the $D 8_{l} \mathrm{Cr}_{5} \mathrm{~B}_{3}$ type. An examination of the data for $\mathrm{La}_{5} \mathrm{Si}_{3}$ indicates a similar structure type for this compound.

Experimental

Samples were prepared by mixing appropriate quantities of metal with either germanium or silicon, and arc-melting the mixture in a gettered atmosphere of argon. To improve

* Permanent address: Chemistry Department, California State College at Long Beach, Long Beach, California, U.S.A.
their homogeneity, the fused buttons were turned over and remelted several times. For the 5:4 germanium compounds all of the rare-earth elements were investigated, with these exceptions: promethium, europium and ytterbium. In addition to these elements, holmium and thulium were not studied in the $\mathrm{R}_{5} \mathrm{Si}_{4}$ series.

Lattice constants of the various phases were obtained mainly from single-crystal oscillation and Weissenberg photographs. Filtered $\mathrm{Cu} K \alpha(=1.5418 \AA$) radiation was used. In some instances, front-reflection lines in powder patterns prepared with $\mathrm{Cr}(K \alpha=2 \cdot 2909 \AA)$ radiation were used to obtain lattice constants. The latter were refined by means of the least-squares program of Heaton, Gvildys \& Mueller (1964). Accuracy of the lattice constants derived from singlecrystal photographs is estimated to be of the order of 0.5%; those from powder patterns, 0.2 to 0.3%.

Structural results

$\mathrm{R}_{5} \mathrm{Ge}_{4}$ compounds

When germanium is used as the combining element, all of the rare-earth metals studied form the orthorhombic $5: 4$ phase exhibited by $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$. This behavior contrasts sharply with the behavior of the rare-earth monogermanides, for
which three different structure types have been observed (Tharp, Smith \& Johnson, 1966).
Crystallographic data pertinent to the orthorhombic 5:4 phase are as follows: probable space group, Pnma [from structure determination of $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ (Smith, Johnson \& Tharp, 1967)]; the unit cell contains four $\mathrm{R}_{5} \mathrm{Ge}_{4}$ units. Excepting the cases for $\mathrm{R}=\mathrm{Tm}$ and Lu , the lattice constants (Table 1 and Fig. 1) follow a uniform lanthanide contrac-

Fig. 1. Variation of the lattice constants of the orthorhombic $\mathrm{R}_{5} \mathrm{Ge}_{4}$ compounds.
tion so that the axial ratio, $a: b: c$, remains rather constant. More reliable determination of the lattice constants of $\mathrm{Tm}_{5} \mathrm{Ge}_{4}$ and $\mathrm{Lu}_{5} \mathrm{Ge}_{4}$ from powder patterns confirms the closer approach to equality of a and c for these compounds. The reason for this behavior is not clear.

$\mathrm{R}_{5} \mathrm{Si}_{4}$ compounds

The situation for the analogous silicon compounds is more complex. Single-crystal studies show that four of the lanthanide elements, terbium, dysprosium, erbium and yttrium, form the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ type structure. Preparations with samarium and gadolinium yielded fine-grained samples from which no single crystals could be isolated. Powder patterns indicate the FeB type monosilicide (Hohnke \& Parthé, 1966) as a major phase in the samarium and gadolinium preparations. The remaining lines could be indexed on the basis of the orthorhombic $5: 4$ phase; the lattice constants in Table 2 for $\mathrm{Sm}_{5} \mathrm{Si}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ were obtained in this way.

Table 2. Lattice constants of $\mathrm{R}_{5} \mathrm{Si}_{4}$ compounds

	Crystal				
R	class*	a	b	c	V
La	t	8.04 A	8.04 A	15.43 §	$997 \AA^{3}$
Ce	t	7.93	$7 \cdot 93$	15.04	946
Pr	t	7.90	7.90	14.91	931
Nd	t	7.87	$7 \cdot 87$	14.78	915
Sm	o	7.57	14.88	7.78	875
Gd	o	7.45	14.67	7.73	845
Tb	o	$7 \cdot 41$	14.58	7.69	831
Dy	o	$7 \cdot 36$	14.48	7.65	815
Er	o	$7 \cdot 27$	$14 \cdot 32$	7.58	789
Lu	m \dagger	$7 \cdot 20$	$14 \cdot 11$	7.46	757
Y	0	$7 \cdot 39$	14.52	$7 \cdot 64$	819

The silicide preparations with lanthanum, cerium, praesodymium and neodymium form tetragonal crystals. The diffraction effects are consistent with the space group $P 4_{1} 2_{1} 2$ (or $P 4_{3} 2_{1}$). The size and shape of the unit cell are similar to the orthorhombic $5: 4$ series; however, substantial differences in the reflection intensities indicate a different structure. It appears likely that this structure type is the same as that reported recently by Karpinsky \& Evseev (1966) for $\mathrm{Zr}_{5} \mathrm{Si}_{4}$. Lattice constants for the tetragonal compounds were obtained from Debye-Scherrer patterns with

Table 3. X-ray powder pattern for $\mathrm{Nd}_{5} \mathrm{Si}_{4}$
$\mathrm{Cr} K \alpha$ radiation. Tetragonal: $a=7 \cdot 868, c=14.78 \AA$

	$10^{4} \sin ^{2} \theta$	$10^{4} \sin ^{2} \theta$	I		$10^{4} \sin ^{2} \theta$	$10^{4} \sin ^{2} \theta$	I
$h k l$	obs.	calc.	obs.	$h k l$	obs.	calc.	obs.
112	672	664	w	204	1803	1808	$w+$
200	848	848	w	115	1925	1925	s
201	907	968	m	301	1970	1968	w
004	963	961	$w+$	214	2014	2020	w
210	1063	1060	w	302	2146	2148	s
202	1092	1088	m	223	2240	2236	$w+$
211	1125	1120	$m-$	205	2354	2349	$w+$
104	1173	1173	m	303	2451	2448	w
212	1305	1300	$v w$	116	2580	2585	$w+$
203	1388	$\{1388$	s	224	2657	2656	$w+$
$114\}$	1385		322	2990	2996	$v w$	
213	1600	1600	s	314	3091	3080	$v w$
105	1716	1713	$w+$	216	3221	3221	$v w$
221	1756	1756	$v s$	117	3368	3366	$w+$

Cr radiation. The powder pattern observed for $\mathrm{Nd}_{5} \mathrm{Si}_{4}$ is given in Table 3.
The last member of the lanthanide elements, lutetium, forms a $5: 4$ compound that is monoclinic. This modification is a simple distortion of the orthorhombic phase as evidenced by a close similarity of reflection intensities between the two phases. To bring out the crystallographic similarity, the monoclinic cell chosen has the c-axis unique. The probable space group is $P 2_{1} / a$. The extinction condition, 0 kl , $k+l=$ odd, observed in the orthorhombic phase is also retained in the monoclinic modification as a non-crystallographic condition. Crystals of this material are invariably twinned, the twin axis being the unique c axis.

A plot of the lattice constants (Fig. 2) shows several interesting features. As mentioned above, the orthorhombic and tetragonal compounds are of different structure types. Nevertheless, a smooth curve relates a-axis repeat distances in the tetragonal series with c-axis values in the orthorhombic and monoclinic series. Within the orthorhombic region, c / a ratios are larger than corresponding values in the germanide series. In further contrast, the c / a ratio becomes larger in going across the series rather than the converse as observed for the germanium compounds.

It may be remarked that the occurrence of three phases in the silicide series does not seem to follow from size effects. For the germanide compounds, the orthorhombic phase is stable for radius ratios ($r_{\mathrm{R}} / r_{\mathrm{Ge}}$) ranging from $1.37\left(\mathrm{La}_{5} \mathrm{Ge}_{4}\right)$ to $1.27\left(\mathrm{Lu}_{5} \mathrm{Ge}_{4}\right)$. [Atomic radii are taken from the compilation of Teatum, Gschneidner \& Waber (1959)]. Against this behavior the orthorhombic phase in the silicide series is unstable at $\mathrm{Lu}_{5} \mathrm{Si}_{4}$ where the radius ratio is $1 \cdot 32$. For $\mathrm{Sm}_{5} \mathrm{Si}_{4}$ the ratio is 1.37 ; this could conceivably represent an upper limit for the orthorhombic phase. The radius ratio for tetragonal $\mathrm{Zr}_{5} \mathrm{Si}_{4}$, however, attains a value of $1 \cdot 21$. Thus, the occurrence of the tetragonal phase for the lighter (i.e. larger) lanthanide elements is not explained on the basis of size differences, if the usual valence of 3 is assumed for these elements.

$\mathrm{R}_{5} \mathrm{Si}_{3}$ compounds

Single crystals from the praesodymium preparation at this stoichiometry are body-centered tetragonal. The systematic extinctions and c / a axial ratio point to a $D 8_{l} \mathrm{Cr}_{5} \mathrm{~B}_{3}$ structure type (space group $=I 4 / \mathrm{mcm}$). The powder pattern of $\mathrm{Ce}_{5} \mathrm{Si}_{3}$ is quite similar to that of $\mathrm{Pr}_{5} \mathrm{Si}_{3}$; lattice constants obtained from these photographs are:

$$
\begin{aligned}
& \mathrm{Ce}_{5} \mathrm{Si}_{3} a=7.89 \pm 0.01, c=13.78 \pm 0.02 \AA ; V=858 \AA^{3} \\
& \mathrm{Pr}_{5} \mathrm{Si}_{3} a=7.812 \pm 0.005, c=13.75 \pm 0.01 \AA ; V=839 \AA^{3} .
\end{aligned}
$$

Table 4 shows the agreement between observed and calculated powder data for $\mathrm{Pr}_{5} \mathrm{Si}_{3}$, a $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ structure type being assumed. Intensities were calculated by means of the program of Smith (1963); no attempt was made to refine the positional parameters of the $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ structure (Bertaut \& Blum, 1953). The powder pattern of $\mathrm{La}_{5} \mathrm{Si}_{3}$ given by Gladyshevskii et al. (1965) is readily indexed in terms of this structure type. Lattice constants for $\mathrm{La}_{5} \mathrm{Si}_{3}$ are:

$$
a=7.953, c=14.04 \AA ; V=880 \AA^{3} .
$$

Thus, the structures of the $\mathrm{R}_{5} \mathrm{Si}_{3}$ compounds fall into at least two classes: a $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ type and an $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ type. This behavior for the silicon compounds is in contrast with that of the analogous rare earth-germanium compounds for which only the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure type is found (Gladyshevskii, 1964).

Table 4. X-ray powder data for $\operatorname{Pr}_{5} \mathrm{Si}_{3}$
Space group: $14 / \mathrm{mcm}$. Positional parameters as in $\mathrm{Cr}_{5} \mathrm{~B}_{3}$. Chromium radiation ($K x=2.2909 \AA$)

hkl	$\begin{gathered} 10^{4} \sin ^{2} \theta \\ \text { obs. } \end{gathered}$	$\begin{gathered} 10^{4} \sin ^{2} \theta \\ \text { calc. } \end{gathered}$	$\begin{gathered} I \\ \text { obs. } \end{gathered}$	$\begin{gathered} I \\ \text { calc. } \end{gathered}$
002	-	277	-	<1
110	-	430	-	<1
112	713	707	$w+$	20
200	867	860	$w+$	6
004	1115	1109	m-	9
2023	1149	\{1137	s	¢ 27
$211\}$	1149	\{1144	s	1116
114	1547	1539	m	29
2133	1708	1699		$\{100$
$220\}$		1720	es	$\{18$
204	1978	1969	s	47
222	-	1997	-	1
310	2155	2150	m	62
312	-	2427	-	1
006	2504	2496	m	20
215	2821	2808	$v v w$	<1
224	-	2829	--	<1
321	2876	2864	vvw	<1
116	-	2926	-	<1
314	-	3259	-	<1
206	3367	3356	w	2
323	-	3419	-	<1
400	-	3440	-	2
$402\}$	3731	f3717		\{ 2
411\}	3731	[3724	m	$\{13$
330	3875	3870	$v w$	9
332	4166	4147	$v v w$	6
226	4220	4216	vow	4
413)	4287	f4279	$s-$	\{ 28
420 \}	4287	\{4300	$s-$	$\{9$
008	-	4438	-	3
217	4477	4473	$s-$	32

We wish to thank Mr V. Silveira for the powder photography. This work was performed under the auspices of the U.S. Atomic Energy Commission.

Fig. 2. Variation of the lattice constants of the $\mathrm{R}_{5} \mathrm{Si}_{4}$ compounds. Scale on left pertains to filled and half-filled symbols; scale on right pertains to open symbols.

References

Bertaut, F. \& Blum, P. (1953). C.r. Acad. Sci. Paris, 236, 1055.

Git.ADYSHEVSKII, E. I. (1964). Zh. Strukturnoi Khim. 5, 919.
Giadyshevski, E. I., Dvorina L. A., Kulikova, A. A. \&
Verkhoglyadova, T.S. (1965). Inorg. Materials, 1, 298. Gladyshevskif, E. I. \& Kripyakevich, P. I. (1964). Zh. Strukturnoi Khim. 5, 853.
Heaton, L., Gvildys, J. \& Mueller, M. (1964). Private communication.

Hohnke, D. \& Parthé, E. (1966). Acta Cryst. 20, 572.
Karpinsky, O. \& Evseev, B. (1966). Acta Cryst. 21, A 82.
Smith, D. K. (1963). Lawrence Radiation Laboratory, Livermore, California, Report UCRL-7196.
Smith, G. S., Johnson, Q. \& Tharp, A. G. (1967). Acta Cryst. 22, 269.
Teatum, E., Gschneidner, K. \& Waber, J. (1959). Los Alamos Scientific Laboratory Report LA-2345.
Tharp, A. G., Smith, G. S. \& Johnson, Q. (1966). Acta Cryst. 20, 583.

Acta Cryst. (1967). 22, 943
The crystal structure of the orthorhombic form of bis-(N-methylsalicylaldiminato)nickel. By M. R. Fox and E.C.LINGAFELTER, Department of Chemistry, University of Washington, Seattle, Washington 98105, U.S.A.

(Received 27 December 1966)

The crystal structure of the orthorhombic form of bis-(N-methylsalicylaldiminato)nickel has been determined. The space group is Ibam and the cell has dimensions $a=9 \cdot 22, b=24 \cdot 46, c=6 \cdot 58 \AA$ and contains 4 molecules. The crystal structure is essentially identical with that of the corresponding copper compound.

The crystal structure of the monoclinic form of bis- $(\mathrm{N}-$ methylsalicylaldiminato)nickel has been reported by Frasson, Panattoni \& Sacconi (1959). We have now determined the crystal structure of the orthorhombic form, which is isomorphous with the α form of the corresponding copper compound (Lingafelter, Simmons, Morosin, Scheringer \& Freiburg, 1961).

Green orthorhombic needles grown along [001] were obtained from Dr James Ferguson. Cell dimensions, determined from rotation and zero-level Weissenberg photographs, taken with $\mathrm{Cu} K \propto$ radiation and calibrated by superimposing the rotation pattern of sodium chloride ($a_{0}=$ $5 \cdot 6894 \AA$) on each photograph, are $a=9 \cdot 22(3), b=24 \cdot 46(1)$, $c=6.58(1) \AA$. Systematic absences of $h k l$ for $h+k+l \neq 2 n$, of $h 0 l$ for $h \neq 2 n$, and of $0 k l$ for $k \neq 2 n$, indicate the space groups Ibam or Iba2. There are four molecules in the cell.

A crystal of dimensions $0.1 \mathrm{~mm} \times 0.06 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ was used for collection of intensities of $h k 0$ through $h k 3$. Because of the great similarity of the distribution of intensities between $h k 0$ and $h k 2$ and between $h k 1$ and $h k 3$, only the $h k 0$ and $h k 1$ intensities were measured. The photographs were taken on a Nonius integrating-Weissenberg camera and the intensities were measured as previously described (Lingafelter, Simmons, Morosin, Scheringer \& Freiburg, 1961). 219 independent reflections were examined, of which 48 were found to be too weak to be measured. Lorentz and polarization factors were applied, but no corrections were made for absorption or anomalous dispersion.

The structure was refined by full-matrix least-squares calculations using the program of Busing \& Levy (1959) as adapted by Stewart (1964). The function minimized was $\Sigma w\left(F_{o}-F_{c}\right)^{2}$ and all reflections were given equal weight except that, in each cycle, unobserved reflections with $F_{c}<F_{o}$ were given zero weight. The initial parameters used
for the non-hydrogen atoms were those from the copper compound (Lingafelter, Simmons, Morosin, Scheringer \& Freiburg, 1961). After five cycles, R was $0 \cdot 080$, where $R=$ $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$, with summation over the observed reflections only. At this point, hydrogen atom positions were calculated, and a plot of $\log F_{o} / F_{c}$ vs I_{c} indicated that the 110,121 and 141 reflections were affected by secondary extinction. A set of four additional least-squares cycles, including the contributions of the hydrogen atoms but not refining their parameters, and omitting the reflections 110 , 121 and 141 , reduced R to its final value of 0.070 . In the final cycle, all parameter shifts were less than one standard deviation. The final values of the parameters and their estimated standard deviations are listed in Table 1, while the bond lengths and angles are listed in Table 2.

Table 1. Final values of parameters

	$x / a \times 10^{4}$	$y / b \times 10^{4}$	$z / c \times 10^{4}$	$B \times 10$
Ni	$00(13)$	0	$0(4)$	$32(1)$
N	$-1222(13)$	$635(4)$	0	$32(3)$
O	$1694(9)$	$406(3)$	0	$27(2)$
$\mathrm{C}(1)$	$1892(20)$	$948(5)$	0	$32(4)$
$\mathrm{C}(2)$	$3287(16)$	$1146(6)$	0	$36(4)$
$\mathrm{C}(3)$	$3539(18)$	$1708(6)$	0	$49(5)$
$\mathrm{C}(4)$	$2456(17)$	$2063(6)$	0	$39(4)$
$\mathrm{C}(5)$	$1036(17)$	$1889(6)$	0	$39(4)$
$\mathrm{C}(6)$	$705(16)$	$1312(6)$	0	$35(4)$
$\mathrm{C}(7)$	$-778(14)$	$1145(5)$	0	$28(3)$
$\mathrm{C}(8)$	$-2836(14)$	$563(5)$	0	$26(3)$
$\mathrm{H}(1)$	4125	887	0	36
$\mathrm{H}(2)$	4561	1846	0	49
$\mathrm{H}(3)$	2673	2464	0	39
$\mathrm{H}(4)$	232	2164	0	39
$\mathrm{H}(5)$	1535	1438	0	28
$\mathrm{H}(6)$	3175	175	0	26
$\mathrm{H}(7)$	-3233	746	1241	26

